
By Disha A Patel

Machine Learning Based 
Recommendation of Method Names: 

How Far Are We



Overview

 INTRODUCTION

 The paper makes the following contributions

 Recommendation for Method Name

 Recommendation for Other Identifiers

 Machine Learning based Code Recommendation

 EXPERIMENTAL SETUP

❑ Evaluated Approach

❑ Research Questions

❑ Metrics

 RESULTS AND ANALYSIS

 Threats to Validity

 HEURISTICS BASED ALTERNATIVE APPROACH

❑ Overview

❑ Distinguishing Getter/Setter Methods

❑ Distinguishing Delegations

❑ Frequency-based Name Recommendation 

❑ Comparison Against code2vec

 DISCUSSION

❑ Implications

❑ Limitations

 CONCLUSIONS AND FUTURE WORK



INTRODUCTION

Identifiers are widely employed to identify unique software 
entities. According to a recent study

Identifiers account for approximately 70% of the source code in 
terms of characters

A well-constructed identifier not only follows languagespecific 
naming conventions, but also conveys intention/responsibility of 
its associated software entity

Consequently, high quality identifiers have significant influence 
on the readability of source code.



The paper makes the following contributions: 

First, a comprehensive assessment and in-depth analysis of the state-of-the-
art approach in ML-based method name recommendation. The analysis not 
only reveals the state of the art, but also discovers where and why the 
approach works or doesn’t work.

Second, a simple and straightforward approach in recommending method 
names. It significantly outperforms the state-of-the-art ML-based 
complicated approach in the evaluation, which suggests that ML-based 
approaches may still have a long way to go.



Recommendation for Method Name

The quality of identifiers proved to have a significant impact on the 
readability and maintainability of software source code Method names, 
as a special kind of identifiers, are especially important because they 
serve as cornerstone of abstraction for aggregated behaviors. 

Consequently, a series of approaches have been proposed to improve 
the quality of method names



Recommendation for Other Identifiers

There are also a lot of 
automated approaches proposed 

to improve the quality of 
identifiers

They first generate a dictionary 
that transforms composing 

words in identifiers into their 
associated standard terms. 

Second, they infer a standard 
syntax from examples 

representative of the different 
forms that can be associated to 
the main grammatical functions 
for arranging those standardized 

terms into a sequence.



Machine Learning based Code 

Recommendation

 Recommender systems have a wide range of applications in software 

engineering to improve productivity and reliability

 Many of these systems employ machine learning techniques to assist 

developers in writing or maintaining software source code.

 The most popular recommender system used in integrated development 

environments (IDEs) is code recommendation system

 API method call such models statistically learn the probability distribution of 

API usage graphs extracted from source code snippets, and then recommend 

the next API by computing the appearance probability of each API against a 

given usage graph.



EXPERIMENTAL SETUP

Evaluated 
Approach 

To evaluate the state of the art in ML-based recommendation of method names, we 
select code2vec for the evaluation. 

code2vec is selected because of the following reasons. 

First, it represents the state of the art in this field. As introduced in Section II, code2vec 
was proposed recently on POPL 2019, and proved significantly more accurate than 
alternative approaches

Second, the source code of its implementation is publicly available, which significantly 
facilitates the evaluation. It also facilitates other researchers to replicate the 
experiment. We make the replication package of the evaluation publicly available on 
GitHub to facilitate third-party replication and further investigation.



Research Questions

RQ1: How well does 
code2vec work on datasets 

other than the one 
employed by the original 
evaluation conducted by 
the authors of code2vec?

RQ2: How well does 
code2vec work with more 

realistic settings?

RQ3: Can code2vec 
generate method names 
correctly when the given 

method bodies do not 
contain method name 

tokens?

RQ4: Where and why does 
code2vec work?

RQ5: Where and why does 
code2vec fail?

RQ6: Is code2vec useful for 
developers? How often 

does code2vec recommend 
correctly for methods that 
are challenging to name 

manually?



Metrics



RESULTS AND ANALYSIS

 RQ1: Comparable Performance on Different Datasets

 First, code2vec is accurate in recommending method 
names. The top 1 recommendation is often (at a 
chance of 49.89% on original dataset and 43.87% on 
new dataset) correct. It has a great chance (58.41% on 
original dataset and 51.33% on new dataset) to 
present the correct method names on its top 10 
recommendation list. High MRR (52.96% and 46.51%) 
also suggests that the correct names are often ranked 
on the top. 

 Second, switching datasets does not result in 
significant reduction in performance. Although the 
precision/recall is slightly reduced (e.g., from 49.89% 
to 43.87% on rank 1), the major reason for the 
reduction is the size of new dataset: the number of 
methods in new dataset is only 28.6% of that in 
original dataset



RQ2: Realistic Settings 
Result in Reduced 
Performance

 To address research question RQ2, we 
evaluate code2vec on our new dataset 
with different settings, i.e., file-based 
validation, project-based validation, 
and project-based nonoverriding 
validation. File-based validation 
partitions dataset into training, 
validation and test sets at file level 
whereas the other two validations work 
at project level. The only difference 
between project-based validation and 
project-based nonoverriding validation 
is that overriding methods are excluded 
by the latter but included by the 
former.



RQ3: Coining Method 
Names To address 
research

 We evaluate the performance of 
code2vec in generating seen and 
unseen method name tokens, 
respectively. For each of method names 
in new dataset, we split it into tokens 
according to the Camel-Case naming 
convention. A token t from method 
name mn is a seen token if t appears 
(case insensitive) in the body named by 
mn. Otherwise, it is an unseen token. 
We assess how often code2vec can 
successfully recommend seen/unseen 
method name tokens during project-
based non-overriding validation



RQ4: Where and Why 

code2vec Works



. RQ5: Where and 

Why code2vec Fails



RQ6: Limited Usefulness for Developers

 First, we invite six developers involved in a commercial 
project for the evaluation. The commercial project has 
been released recently by a giant of IT industry to conduct 
largescale software refactorings.

 Second, for each of the participants, we randomly select 
one hundred methods developed by himself/herself.

 Third, we request all participants to score the difficulty in 
naming sampled methods. Notably, participants do not 
score methods developed by other developers, and thus 
each of them score exactly one hundred methods. The 
scores rank between one and five (i.e. 5-point scale [41]–
[44]) where one represents least difficulty and five 
represents highest difficulty.

 Fourth, we apply code2vec of project-based non-overrding
validation to the scored methods, and validate the 
recommendations against manually constructed names.



Threats to 

Validity

 A threat to the external validity is that 

we employ only one new dataset to 

validate the impact of switching 

datasets on the performance of 

code2vec. 

 A threat to construct validity is that we 

assess the correctness of generated 

names based on their equivalence to 

the manually constructed ones.



HEURISTICS BASED ALTERNATIVE APPROACH

 First, based on a sequence of heuristics, HeMa decides whether mb is a 
getter/setter method. If yes, HeMa generates method name for it automatically 
based on another sequence of heuristics.

 Second, based on a sequence of heuristics, HeMa decides whether mb is a 
delegation. If yes, HeMa generates method name for it automatically based on 
another sequence of heuristics. 

 Third, if the preceding heuristics fail, HeMa employs a sequence of heuristics to 
retrieve methods in a large corpus that share the same return type and 
parameters (both parameter names and parameter types but regardless of 
parameter orders) with mb. From the resulting set of methods (notated as Sm), 
HeMa picks up the most popular method name and suggests it to mb. If Sm = ∅, 
HeMa refuses to make any recommendation.



Distinguishing 
Getter/Setter Methods

 First, if the given method body 
returns nothing, i.e. the return 
type is void, the given method is 
not a getter

 Second, if the given method body 
contains more than one Return 
Statements, HeMa will not 
recognize it as a getter method

 Third, if the value returned by the 
only Return Statement is a field 
(notated as ${field}) declared 
within the enclosing class, it is a 
getter method.



Distinguishing Delegations

 For a given method body mb, HeMa distinguishes it 

as a delegation if:

 The method body contains a single statement; 

 And the statement is a ReturnStatement that returns 

an invocation on another server method (notated as 

sMethod). For the potential delegation, HeMa

recommends to reuse the name of invoked method 

(i.e. sMethod).



Frequency-based Name 

Recommendation

 If the given body mb is neither getter/setter nor 

delegation, HeMa retrieves a set of methods (Sm) that 

share the same return type and the same parameter list 

(including both parameter types and names but 

regardless of the order of parameters). If Sm is empty, 

HeMa refuses to make any recommendation. Otherwise, 

it selects the method name with highest frequency in 

Sm, and recommends to use this name for the given 

method body.



Comparison 

Against 

code2vec

 From the analysis in the preceding paragraphs, we 

conclude that the heuristics based HeMa significantly 

outperforms the state-of-the-art ML-based code2vec



DISCUSSION

Implications
Empirical Settings Are Critical

A Friend in Need Is A Friend Indeed

Complex Approaches Are NOT Necessarily 
Better than Simple and Straightforward 
Ones

Coining Method Names with Tokens Outside 
Method Body

Limitations



Implications

The definition of empirical is something that is based solely on experiment or 
experience.

Overall performance of code2vec is promising, it is not much useful. The major reason 
is that it frequently works when it is not strongly needed but fails when it is in need. 

To investigate the possibility of designing a simple and straightforward approaches 
whose performance is comparable to code2vec, we propose a heuristics based 
approach called HeMa. Evaluation results

52% of method names in testing set are not used as method names in the large-scale 
training set. Consequently, method name recommendation approaches.



FIRST LIMITATIONS
THE FIRST LIMITATION OF THE EMPIRICAL STUDY IS THAT ONLY ONE STATE-OF-THE-ART 

APPROACH IS INVOLVED IN THE STUDY. NOTABLY, ML-BASED APPROACHES, ESPECIALLY DEEP 

LEARNING BASED ONES ARE OFTEN TIME AND RESOURCE CONSUMING. CONSEQUENTLY, 

INVOLVING MORE BASELINES IN THE STUDY COULD SIGNIFICANTLY INCREASE THE COST IN BOTH 

COMPUTING RESOURCE AND HUMAN RESOURCE OF MANUAL ANALYSIS.



Second 

limitation

 The second limitation is the limited usefulness 

of alternative approach proposed in Section V. 

We design this approach to intuitively reveal 

the state of the art as well as the possibility of 

designing simple but effective approaches. 

Evaluation results in Section V-E suggest that it 

has successfully accomplished its mission. 

However, it should be noted that most of 

method names it recommends successfully are 

associated with simple methods, like 

getter/setter and delegations. Developers 

rarely need help in naming such simple 

methods, which may suggest that usefulness of 

the approach is limited.



CONCLUSIONS AND FUTURE WORK

 Researches have recently achieved significant advances in machine learning techniques. As a 
result, many of the resulting advanced machine learning techniques are exploited to solve 
software engineering tasks

 Future work is needed to investigate the correlation between difficulty in naming method 
names and source code metrics. In this paper, we measure the difficulty subjectively by asking 
developers to give a number ranking from 1 to 5 to represent the difficulty. Such subjective 
ranking could be inaccurate. In future, it would be interesting to investigate more accurate and 
more objective ways to measure the difficulty in naming methods. In future, it is also 
interesting to investigate whether clone detection techniques could be exploited to retrieve 
similar methods in corpus, and whether such techniques could outperform the heuristics 
presented in this paper



Questions?



Thank you


